Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,2'-Dimethyl-4,4'-bi-1,3-thiazole- $\kappa^2 N.N'$)diiodidomercurv(II)

Anita Abedi* and Effat Yahyazade Bali

Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran

Correspondence e-mail: anita_abedi@yahoo.com

Received 18 July 2010; accepted 22 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.025; wR factor = 0.058; data-to-parameter ratio = 22.7.

In the title compound, $[HgI_2(C_8H_8N_2S_2)]$, the Hg^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 2,2'-dimethyl-4,4'-bithiazole ligand and two I atoms. In the crystal structure, adjacent molecules are connected by $\pi - \pi$ contacts between the thiazole rings [centroid–centroid distance = 3.591(3) Å].

Related literature

For metal complexes with the 2,2'-dimethyl-4,4'-bithiazole ligand, see: Al-Hashemi et al. (2009); Khavasi et al. (2008); Notash et al. (2008). For related structures, see: Safari et al. (2009); Tadayon Pour et al. (2008); Yousefi et al. (2008).

Experimental

Crystal data $[HgI_2(C_8H_8N_2S_2)]$

 $M_r = 650.67$

metal-organic compounds

Mo $K\alpha$ radiation

 $0.18 \times 0.16 \times 0.11 \ \mathrm{mm}$

 $\mu = 15.31 \text{ mm}^-$

T = 100 K

Z = 8

Orthorhombic, Pbca a = 12.9059 (10) Åb = 14.8605 (11) Åc = 14.9432 (11) Å V = 2865.9 (4) Å³

Data collection

Bruker APEXII CCD	27850 measured reflections
diffractometer	3135 independent reflections
Absorption correction: multi-scan	2746 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.060$
$T_{\min} = 0.085, T_{\max} = 0.191$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	138 parameters
$wR(F^2) = 0.058$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$
3135 reflections	$\Delta \rho_{\rm min} = -1.36 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Selected bond lengths (Å).

Hg1-N1	2.397 (4)	Hg1-I1	2.6600 (4)
Hg1-N2	2.408 (4)	Hg1-I2	2.6592 (4)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2334).

References

- Al-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909-2918.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.
- Notash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553-3557.
- Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tadayon Pour, N., Ebadi, A., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1305.
- Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.

supplementary materials

Acta Cryst. (2010). E66, m1023 [doi:10.1107/S1600536810029302]

(2,2'-Dimethyl-4,4'-bi-1,3-thiazole- $\kappa^2 N, N'$)diiodidomercury(II)

A. Abedi and E. Yahyazade Bali

Comment

Khavasi *et al.* (2008) reported the synthesis and structure of 2,2'-dimethyl-4,4'-bithiazole (dm4bt) by single crystal X-ray diffraction methods. Dm4bt is a good bidentate ligand, and numerous complexes with dm4bt have been prepared, such as those of zinc (Khavasi *et al.*, 2008), thallium (Notash *et al.*, 2008), cadmium (Notash *et al.*, 2008) and copper (Al-Hashemi *et al.*, 2009). For further investigation of dm4bt, we synthezised the title complex, and report herein its crystal structure.

In the title compound (Fig. 1), the Hg^{II} atom is four-coordinated in a distorted tetrahedral geometry by two N atoms from a 2,2'-dimethyl-4,4'-bithiazole ligand and two I atoms. The Hg—N and Hg—I bond lengths and angles (Table 1) are within normal range of [Hg(SCN)₂(dm4bt)] (Safari *et al.*, 2009), [HgI₂(4,4'-dmbpy)] (Yousefi *et al.*, 2008) and [HgI₂(5,5'-dmbpy)] (Tadayon Pour *et al.*, 2008) (4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine; 5,5'-dmbpy = 5,5'-dimethyl-2, 2'-bipyridine). In the crystal structure, π - π contacts (Fig. 2) between the thiazole rings, *Cg*2…*Cg*3ⁱ [symmetry code: (i) 1-x, 1-y, -z. *Cg*2 and *Cg*3 are centroids of the S1, C1, N1, C3, C2 ring and the S2, C5, C4, N2, C6 ring], stabilize the structure, with a centroid–centroid distance of 3.591 (3) Å.

Experimental

A solution of 2,2'-dimethyl-4,4'-bithiazole (0.20 g, 1.00 mmol) in methanol (15 ml) was added to a solution of HgI_2 (0.46 g, 1.00 mmol) in methanol (15 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained after one week by methanol diffusion to a colorless solution of the title compound in DMSO (yield: 0.48 g, 73.8%).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.98 (CH₃) Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing diagram of the title compound.

$(2,2'-Dimethyl-4,4'-bi-1,3-thiazole-\kappa^2 N, N')$ diiodidomercury(II)

Crystal	data
---------	------

$[HgI_2(C_8H_8N_2S_2)]$	$D_{\rm x} = 3.016 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 650.67$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Orthorhombic, Pbca	Cell parameters from 4823 reflections
a = 12.9059 (10) Å	$\theta = 4-27^{\circ}$
<i>b</i> = 14.8605 (11) Å	$\mu = 15.31 \text{ mm}^{-1}$
c = 14.9432 (11) Å	T = 100 K
$V = 2865.9 (4) \text{ Å}^3$	Prism, colorless
Z = 8	$0.18 \times 0.16 \times 0.11 \text{ mm}$
F(000) = 2304	

Data collection

3135 independent reflections
2746 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.060$
$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
$h = -16 \rightarrow 16$
$k = -18 \longrightarrow 18$
$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.058$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.030P)^2 + 3.P]$ where $P = (F_0^2 + 2F_c^2)/3$
3135 reflections	$(\Delta/\sigma)_{\text{max}} = 0.002$

supplementary materials

138 parameters	$\Delta\rho_{max} = 0.74~e~\text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.36 \text{ e } \text{\AA}^{-3}$

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Hg1	0.510845 (16)	0.378820 (14)	0.225249 (14)	0.01739 (7)
I1	0.59477 (3)	0.23923 (3)	0.14062 (3)	0.02478 (10)
I2	0.46410 (3)	0.41700 (2)	0.39435 (2)	0.02213 (9)
S1	0.61688 (11)	0.68779 (9)	0.15627 (10)	0.0197 (3)
S2	0.24214 (11)	0.45250 (10)	0.00224 (9)	0.0209 (3)
N1	0.5553 (3)	0.5267 (3)	0.1740 (3)	0.0169 (9)
N2	0.3846 (3)	0.4293 (3)	0.1177 (3)	0.0158 (9)
C1	0.6287 (4)	0.5813 (4)	0.2004 (4)	0.0177 (11)
C2	0.5076 (4)	0.6562 (4)	0.1008 (4)	0.0203 (12)
H2A	0.4678	0.6948	0.0637	0.024*
C3	0.4849 (4)	0.5682 (4)	0.1169 (4)	0.0181 (11)
C4	0.3987 (4)	0.5150 (4)	0.0821 (3)	0.0166 (11)
C5	0.3287 (4)	0.5378 (4)	0.0189 (4)	0.0186 (11)
H5A	0.3278	0.5936	-0.0121	0.022*
C6	0.3056 (4)	0.3887 (4)	0.0811 (4)	0.0177 (11)
C7	0.7144 (5)	0.5550 (4)	0.2603 (4)	0.0271 (13)
H7A	0.6860	0.5350	0.3178	0.041*
H7B	0.7602	0.6066	0.2700	0.041*
H7C	0.7537	0.5057	0.2330	0.041*
C8	0.2714 (5)	0.2959 (4)	0.1047 (4)	0.0260 (13)
H8A	0.2584	0.2923	0.1692	0.039*
H8B	0.3257	0.2528	0.0882	0.039*
H8C	0.2076	0.2815	0.0721	0.039*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg1	0.01885 (11)	0.01823 (11)	0.01509 (11)	0.00215 (8)	-0.00002 (8)	0.00063 (8)
I1	0.0298 (2)	0.0248 (2)	0.01979 (19)	0.01150 (16)	0.00339 (16)	0.00036 (15)
I2	0.0271 (2)	0.0226 (2)	0.01672 (18)	0.00144 (15)	0.00188 (14)	-0.00428 (14)
S1	0.0204 (7)	0.0173 (7)	0.0214 (7)	0.0005 (5)	-0.0012 (5)	0.0021 (5)
S2	0.0201 (7)	0.0259 (8)	0.0166 (7)	0.0026 (5)	-0.0042 (5)	0.0006 (6)
N1	0.018 (2)	0.019 (2)	0.013 (2)	0.0015 (18)	0.0012 (18)	0.0033 (18)
N2	0.016 (2)	0.018 (2)	0.013 (2)	0.0047 (17)	0.0009 (17)	-0.0022 (18)
C1	0.018 (3)	0.021 (3)	0.014 (3)	0.002 (2)	0.000 (2)	0.000 (2)
C2	0.015 (3)	0.025 (3)	0.021 (3)	0.005 (2)	0.000 (2)	-0.001 (2)
C3	0.017 (3)	0.026 (3)	0.011 (3)	0.005 (2)	0.004 (2)	0.001 (2)
C4	0.015 (3)	0.022 (3)	0.013 (3)	0.002 (2)	0.001 (2)	-0.003 (2)
C5	0.020 (3)	0.018 (3)	0.018 (3)	0.002 (2)	0.007 (2)	-0.003 (2)
C6	0.018 (3)	0.019 (3)	0.016 (3)	0.004 (2)	0.001 (2)	-0.005 (2)
C7	0.027 (3)	0.027 (3)	0.028 (3)	-0.004 (2)	-0.010 (3)	0.006 (3)
C8	0.028 (3)	0.023 (3)	0.027 (3)	-0.001 (2)	-0.007 (3)	0.000 (3)

Geometric parameters (Å, °)

Hg1—N1	2.397 (4)	C2—C3	1.361 (8)
Hg1—N2	2.408 (4)	C2—H2A	0.9500
Hg1—I1	2.6600 (4)	C3—C4	1.462 (8)
Hg1—I2	2.6592 (4)	C4—C5	1.349 (7)
S1—C2	1.701 (6)	C5—H5A	0.9500
S1—C1	1.721 (6)	C6—C8	1.491 (8)
S2—C5	1.708 (6)	C7—H7A	0.9800
S2—C6	1.720 (6)	C7—H7B	0.9800
N1—C1	1.309 (7)	C7—H7C	0.9800
N1—C3	1.390 (7)	C8—H8A	0.9800
N2—C6	1.304 (7)	C8—H8B	0.9800
N2—C4	1.393 (7)	C8—H8C	0.9800
C1—C7	1.475 (8)		
N1—Hg1—N2	70.32 (15)	N1—C3—C4	118.4 (5)
N1—Hg1—I2	99.35 (11)	C5—C4—N2	114.2 (5)
N2—Hg1—I2	114.46 (10)	C5—C4—C3	128.5 (5)
N1—Hg1—I1	117.74 (11)	N2—C4—C3	117.3 (5)
N2—Hg1—I1	101.61 (10)	C4—C5—S2	110.7 (4)
I2—Hg1—I1	135.280 (14)	C4—C5—H5A	124.7
C2—S1—C1	90.4 (3)	S2—C5—H5A	124.7
C5—S2—C6	89.9 (3)	N2—C6—C8	124.1 (5)
C1—N1—C3	112.5 (5)	N2—C6—S2	113.9 (4)
C1—N1—Hg1	130.2 (4)	C8—C6—S2	122.1 (4)
C3—N1—Hg1	116.5 (3)	С1—С7—Н7А	109.5
C6—N2—C4	111.4 (4)	C1—C7—H7B	109.5
C6—N2—Hg1	131.7 (4)	H7A—C7—H7B	109.5
C4—N2—Hg1	116.9 (3)	С1—С7—Н7С	109.5
N1—C1—C7	124.1 (5)	H7A—C7—H7C	109.5
N1—C1—S1	113.0 (4)	H7B—C7—H7C	109.5
C7—C1—S1	122.9 (4)	C6—C8—H8A	109.5
C3—C2—S1	110.9 (4)	C6—C8—H8B	109.5
С3—С2—Н2А	124.5	H8A—C8—H8B	109.5
S1—C2—H2A	124.5	C6—C8—H8C	109.5
C2—C3—N1	113.2 (5)	H8A—C8—H8C	109.5
C2—C3—C4	128.4 (5)	H8B—C8—H8C	109.5
N2—Hg1—N1—C1	174.2 (5)	C1—N1—C3—C2	0.1 (7)
I2—Hg1—N1—C1	61.5 (5)	Hg1—N1—C3—C2	171.1 (4)
I1—Hg1—N1—C1	-92.7 (5)	C1—N1—C3—C4	180.0 (5)
N2—Hg1—N1—C3	5.1 (3)	Hg1—N1—C3—C4	-9.0 (6)
I2—Hg1—N1—C3	-107.6 (4)	C6—N2—C4—C5	0.4 (6)
I1—Hg1—N1—C3	98.2 (4)	Hg1—N2—C4—C5	176.8 (4)
N1—Hg1—N2—C6	174.7 (5)	C6—N2—C4—C3	-179.8 (5)
I2—Hg1—N2—C6	-93.8 (5)	Hg1—N2—C4—C3	-3.5 (6)
I1—Hg1—N2—C6	59.1 (5)	C2—C3—C4—C5	8.0 (9)
N1—Hg1—N2—C4	-0.7 (3)	N1-C3-C4-C5	-171.9 (5)
I2—Hg1—N2—C4	90.8 (3)	C2-C3-C4-N2	-171.8 (5)

I1—Hg1—N2—C4	-116.3 (3)	N1—C3—C4—N2	8.4 (7)
C3—N1—C1—C7	-179.2 (5)	N2—C4—C5—S2	0.3 (6)
Hg1—N1—C1—C7	11.3 (8)	C3—C4—C5—S2	-179.5 (4)
C3—N1—C1—S1	-0.4 (6)	C6—S2—C5—C4	-0.6 (4)
Hg1—N1—C1—S1	-169.9 (2)	C4—N2—C6—C8	179.5 (5)
C2—S1—C1—N1	0.4 (4)	Hg1—N2—C6—C8	3.9 (8)
C2—S1—C1—C7	179.3 (5)	C4—N2—C6—S2	-0.9 (6)
C1—S1—C2—C3	-0.4 (4)	Hg1—N2—C6—S2	-176.6 (2)
S1—C2—C3—N1	0.2 (6)	C5—S2—C6—N2	0.9 (4)
S1—C2—C3—C4	-179.6 (4)	C5—S2—C6—C8	-179.5 (5)

Fig. 1

Fig. 2